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A reduced model to decrease the number of degrees of freedom of the discretized Navier-Stokes equations
to a small set that nevertheless captures the essential dynamics of the flow is proposed. The Rayleigh-Bénard
convection problem in a cylinder of aspect ratio one where the lower and upper disks, maintained at hot and
cold temperatures, respectively, rotate at equal and opposite angular velocities has been chosen to test the
technique. The nonlinear dynamics is rich and complex when the temperature difference between disks and
their angular velocity is varied. Representatives states—stationary, periodic near sinusoidal, and near

heteroclinic—are presented. In each case, the reduced model is compared with temporal integration, and we
show that 41 degrees of freedom are sufficient to reproduce the signal. We discuss the strengths and weak-
nesses of the algorithm by which we build our reduced model.
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I. INTRODUCTION

The development of techniques to reduce the number of
degrees of freedom of nonlinear complex problem is an ac-
tive research area. In fluid mechanics, the use of proper or-
thogonal decomposition (POD) has emerged and seems to be
favored mainly for open flow problems [1-6] and, to a lesser
extent, in confined geometries [7,8]. A POD basis is orthogo-
nal and is optimal in the sense of minimizing the number of
basis functions necessary to capture the energy of the flow. It
nevertheless has the drawback of requiring results from a
time-dependent code in order to acquire the “snapshots” to
build the basis and this basis will inherently contain the
germs of the initial condition used to run the simulation [9].
This can be a major problem in the context of bifurcation
theory as it will favor certain solution branches, in particular
the stable ones.

An alternate set of basis functions, which does not have
such a bias, is formed by the leading eigenvectors (i.e., those
corresponding to the eigenvalues with the largest real part)
obtained from the governing equations linearized about a
base state. As in the case of POD, the set of basis functions
must be tailored to each specific problem. Even though there
is no mathematical justification for this choice, as rapid con-
vergence of the expansion is not ensured, the reduced set of
leading eigenvectors seems to be a very good candidate for a
Galerkin projection basis and captures most of the dynamics
of the flow. Reduced models and control strategies based on
leading eigenvectors have been implemented for open cavity
flows [10] and compared with results of POD models [11].
Reduced models can also be constructed from the eigenfunc-
tions of the Stokes problem, as was done for the flow around
an array of cylinders [12].
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Several previous studies have used an eigenvector basis to
study convective problems in small-aspect ratio cylindrical
domains. Dauby er al. [13] studied the three-dimensional
Marangoni-Bénard instability, while Siggers [14] studied
axisymmetric Rayleigh-Bénard convection. In both prob-
lems, the base flow, a purely conductive state, is available
analytically. Siggers [14] used stress-free boundary condi-
tions, for which the eigenpairs can also be calculated analyti-
cally, while Dauby et al. [13] computed the eigenpairs nu-
merically for realistic rigid boundaries. Both studies were
able to construct bifurcation diagrams and to capture hetero-
clinic cycles. Gadoin et al. [15] studied a differentially
heated cavity that has a nontrivial base flow. They were able
to reproduce accurately the transient signal of a decaying
random small amplitude two-dimensional perturbation.

We extend these studies by choosing a problem which
combines two well-known fluid-mechanical configurations:
Rayleigh-Bénard convection in cylindrical geometry, e.g.,
[16] and the flow generated by two exactly counter-rotating
disks, e.g., [17]. For a given aspect ratio and fluid properties,
this combination leads to a problem described by two param-
eters, namely the temperature difference between the upper
and lower bounding disks, measured by the Rayleigh number
Ra, and their angular velocity, measured by the Reynolds
number Re. We restricted our reduced model to the axisym-
metric case in order to compare its results with those of a
fully resolved calculation, which uses the Newton-Arnoldi
method to compute the bifurcation diagram in the two-
parameter (Re, Ra) space. A companion article [ 18] presents
the results of this analysis, which includes interesting dy-
namics such as relaxation oscillations and bistability. Our
purpose here is to show that a reduced model using a modest
number of eigenvectors of a numerically computed base flow
can reproduce phenomena such as these, far beyond the
threshold.

The paper is organized as follows. Section II presents the
physical setup, and the general mathematical formulation of
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FIG. 1. Physical setup.

the problem in a dimensionless form. Section III describes
our reduced model and Sec. IV describes its numerical
implementation using a spectral method. In Sec. V, numeri-
cal results obtained using the reduced model are presented
and compared to those obtained from fully resolved simula-
tions. Section VI describes our attempts to minimize the
number of degrees of freedom required to obtain reasonable
agreement with fully resolved simulations. In Sec. VII, we
discuss the prospects for extending our model to treat three-
dimensional geometries and to perform bifurcation analysis.

II. FORMULATION OF THE PROBLEM

The physical setup (see Fig. 1) consists of a horizontal
fluid layer in a cylindrical container with aspect ratio I’
=I/d=1. The walls are rigid and the temperature at the upper
and the bottom plates are T, and Ty+AT, respectively. We
assume axisymmetry throughout.

In the governing equations, u=(u,,u,,u,) is the velocity
field, T is the temperature, p is the pressure, r is the radial
coordinate, and ¢ is the time. They are expressed in dimen-
sionless form after rescaling: r’'=r/d, t'=«kt/d*, ' =du/k,
p'=d*p/(pykv), and O@=(T-T,)/AT-0.5. Here r is the po-
sition vector, « the thermal diffusivity, v the kinematic vis-
cosity of the liquid, and p, the mean density at temperature
T,. The domain is D=[0,I"] X [-1/2,1/2].

The system evolves according to the momentum, mass
balance and energy conservation equations, which in dimen-
sionless form (with primes now omitted) are,

V-u=0, (1)
30 +u-VO=V?0, (2)
du+ (u-V)u=Pr(- Vp + V?u+RaOe,), (3)

where the operators and fields are expressed in cylindrical
coordinates and the Oberbeck-Bousinesq approximation has
been used. Here e, is the unit vector in the z direction. The
following dimensionless numbers have been introduced: the
Prandtl number Pr=v/k, which is set to 1 in our study, and

PHYSICAL REVIEW E 81, 036323 (2010)

the Rayleigh number Ra=gaATd?/ kv, which represents the
effect of buoyancy and in which « is the thermal-expansion
coefficient and g the gravitational acceleration.

Regarding boundary conditions, the top and bottom disks
turn at the same angular velocity € but in opposite directions
and the lateral wall is rigid, so

u,=u,=0, uy=*PrRe-r at z=*1/72, (4)

Z

u=u,=uy,=0 at r=T (5)

where Re=0d?/ v is the Reynolds number. For the tempera-
ture we consider isothermal top and bottom disks and a lat-
eral insulating wall,

O= 305 at r=I".

(6)

Regularity conditions [19] are imposed at r=0. The dis-
continuity in u, at r=I", z=*1/2 has been regularized by
connecting smoothly the linear profile u,=*PrRe-r at z
=+ 1/2 with the condition u,=0 at r=I" by means of a local
exponential profile,

z=*1/2 and 90=0 at

*+PrRe-r if re[0,ry]

PrRe-r (=1

ug(r, *1/2) = iPrRe'rim(—l+e %)
if relr,l]

where r, is a value of r close to I'.

III. REDUCED MODEL

In this section we present a method to reduce Egs. (1)—(6)
to a low-order differential system capable of representing the
dynamics of the flow. This reduction follows the approaches
presented in, e.g., [15,20].

The solution U(r,z,1)=(u,0,p)(r,z,1) of Egs. (1)-(3) at
given Re and Ra is expressed as

U(r,z,0) = UP(r,z) + U(r,z2,1) (7)

where UP(r,z) is the base flow for the given Re and Ra

numbers and U(r,z,7) the perturbation. Introducing Eq. (7)
into the full system [Egs. (1)—=(3)], the time evolution equa-

tion for ﬁ(r,z,t) can be written as
0,0 =Lyl —-NU (8)

where L;» describes the linear part of the equations govern-
ing the perturbation; see Egs. (A2) and (A3) in the Appendix.
The nonlinear quadratic part A/ can be represented, some-
what schematically, as U-VU ; again, see the Appendix. Our
basis functions are the eigenvectors &(r,z) of L», satisfying

L& (r,z)=N\&(r,z). We decompose U(r,z,1) into the form

Ulr,z,0) = 2 AlD&(r.2) )
k

where the A;(f)’s are the expansion coefficients correspond-
ing to the eigenvectors &,(r,z). Inserting this expansion into
Eq. (8) yields
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dA
2 ;t(t) &(r,z) = E NA(1D)€(r,2)
k k

= 2 ADAL(DE(r.2) - VE,(r.2).
Lm
(10)

On the right-hand side, the first sum corresponds to the linear
part and the double sum to the nonlinear quadratic part. In
order to obtain the low-order differential system we take the
inner product of Eq. (10) with the eigenvectors 7,(r,z) of the
adjoint of the Jacobian, using the inner product (f,g)
=2 [[pf grdrdz, where f* is the complex conjugate of f.
The set of eigenvectors §& is biorthogonal to 7;, i.e.,
(&(r,z), m(r,z))=3y. Using this property, the following
nonlinear differential system of equations can be derived,

dA,

— =N 2 A, (11)
N

where wy,,=(&(r,2)-VE,(r,z), mi(r,z)). If the series in Eq.
(9) is truncated with K terms, the number of degrees of free-
dom of the original equations is then reduced to K.

From now on, we will refer to this reduced model as RM.
The reduced model takes the following algorithmic form.

Algorithm
1. Preprocessing

(i) Step 1. For a given Re and Ra compute the steady base
state [time-independent solution of Egs. (1)-(6)] using a
Newton iterative method.

(ii) Step 2. Compute the K leading eigenvalues and eigen-
vectors (\;,7;) and (\;, &) for i=1,...K, from the direct and
adjoint system, respectively, ordered by decreasing real part.

(iii) Step 3. Compute the inner products gy,
=(&(r,2)-VE&,(r,2), qi(r,2)) for k,l,m=1,... K.

2. Time integration

(iv) Step 4. Starting with an initial condition A.(0), k
=1,...,K, integrate in time the system %:)\kAk
—El’m,u,klmAlAm, k=1 g e ,K giVeS Ak(l), k=1 g e ,K.

3. Postprocessing

(v) Step 5. Construct the state U(r,z,t)=U(r,z)
+EkAk(t)§k(r,Z).

IV. NUMERICAL IMPLEMENTATION

The reduced model and algorithm presented above can be
used with any discretization (spectral basis, finite elements,
and finite differences) of the original equations (base flow,
linear stability system, and adjoint system). Gadoin et al.
[15] chose finite differences. In the present work, we use a
spectral method by expanding the fields in Chebyshev poly-
nomials
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FIG. 2. (Color online) Comparison of spatial resolutions in an
oscillating regime. Time series for ©(0.5,0) for case Pla (Re
=110, Ra=18000). Solid blue curve: spatial grid L=N=15.
Dashed red curve: spatial grid L=N=23. Both time series are com-
puted using RM with K=15 eigenvectors. The two time series are
so close as to be indistinguishable on the scale of the figure.

L-1 N-1

f(r2)=2 X fuT(NT,(2) (12)

=0 n=0

and evaluating at the Gauss-Lobatto collocation points (see
Refs. [21,22]). For our computations, we use L=N=15. Fig-
ure 2 shows that the time series from a limit cycle (case Pla,
see Sec. V below) computed from our reduced model using
our spatial resolution L=N=15 is close enough to that ob-
tained using the finer resolution L=N=23 to be visually in-
distinguishable in Fig. 2. We have compared eigenvalues cor-
responding to the L=N=15 and the L=N=23 grids for three
cases at Ra=18000 that we will study below; the differences
are on the order of 0.001% for Re=60 (case SII), 0.01% for
Re=70.73 (case Plla), and 0.1% for Re=110 (case PIa). For
Reynolds numbers beyond this range, Ekman boundary lay-
ers appear near the rotating disks. These become increasingly
thin with increasing Re, and accurate computation of eigen-
values and eigenfunctions would require higher resolution,
as detailed in Lopez et al. [23]. For the range that we have
studied, the spatial resolution L=N=15 is sufficient.

The discrete version of the eigenvalue problem for the
direct and adjoint systems (see the Appendix) are solved (af-
ter a Cayley transformation [24]) with eigs, the MATLAB
implementation of ARPACK [25]. We calculated 50 eigenpairs
using a Krylov space of dimension 160, obtaining residual
errors that were between 1078 and 107!'!. More details on
steps 1 and 2 of the algorithm can be found in Ref. [26].

In order to compute the inner products py,, in step 3, we
interpolate the velocity and temperature fields onto a uniform
300 X 300 grid and use Simpson’s rule. In step 4, any inte-
gration standard routine can be used. We chose ode45 in
MATLAB.

Because we have sought to measure only the error due to
truncating the eigenvector basis set, all other steps—in par-
ticular, the residual in Newton’s method for the steady base
state, calculation of the eigenpairs, and time integration of
the reduced model—have been carried out to machine preci-
sion or very high accuracy and can be viewed for the pur-
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FIG. 3. (Color online) Curves of bifurcation points in the (Re,
Ra) plane showing first pitchfork bifurcation (blue, solid, PF;), sec-
ond pitchfork bifurcation (green, dash-dotted, PF,), Hopf bifurca-
tion (red, dashed, H), secondary subcritical Hopf bifurcation (violet,
dashed, SH) and saddle-node bifurcation (black, dotted, SN). The
vertical line at Re=60 relates to the bifurcation diagram represented
in Fig. 3. Crosses indicate steady (SI,SII) and periodic
(PIa,b, Plla,b, PIIT) cases selected for detailed study.

poses of this investigation as exact; the error is largely domi-
nated by that due to the basis set truncation.

The full time-integration code used for comparison is
completely independent of the reduced model. The code is
implemented with a stream-function-vorticity formulation as
described in [27,28] in an isothermal context, with slight
modifications in boundary-condition implementation [29].
The resolution used is a uniformly distributed (51X 51)
mesh. A typical time step is 10™. We will refer to the fully
resolved time-integration code as FT.

V. NUMERICAL RESULTS

In this section we demonstrate the ability of the RM to
reproduce different temporal behaviors appearing for differ-
ent values of parameters Re and Ra. Figure 3 is a phase
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FIG. 4. Bifurcation diagram corresponding to the vertical line in
Fig. 3. Temperature © at (r=0.5, z=0) as a function of Ra at Re
=60. At Ra=18 000, five steady states (crosses) are found. For Ra
>20 900, dots represent the limit cycle. The lower part of the dia-
gram is related to the upper part by the Boussinesq reflection sym-
metry of Eq. (13). Upper two states represented by crosses are
shown in Figs. 9 and 10.

diagram in the (Re, Ra) plane, showing the bifurcations that
occur in FT; see [18]. There are two pitchfork bifurcations,
indicated in Fig. 3 as PF; and PF,, a saddle-node bifurcation
indicated as SN, a Hopf bifurcation indicated as H, and a
secondary subcritical Hopf bifurcation indicated as SH.
These curves delimit various regions in the (Re, Ra) plane, in
which system behaves differently. Below PF; and H, the only
solution is a steady state which is symmetric, meaning that it
is invariant under reflection in the equatorial (z) plane, com-
bined with temperature inversion

(ur’u07uz9®)(rvz) - (ur’M07_ u,,— )(}’,— Z)- (13)

This basic state, belongs to the branch that originates at
(Re, Ra)=(0,0). For Re <95 and Ra above PF,, this state is
unstable and there also exist two asymmetric stable steady
states. Above PF,, there exist two additional asymmetric un-
stable states, leading to a total of five steady states, as illus-
trated in the bifurcation diagram in Fig. 4 for Re=60. (The

0.5 — 05

0.5

0.5 1
r a)

FIG. 5. (Color online) Basic state, which is symmetric and unstable, for ST (Re=30, Ra=4000). (a) u, (b) temperature O (c) meridional
velocity (u,,u,) and the streamline separating the rolls (solid green curve). Here and in subsequent figures, the contours correspond to equally
spaced values within their ranges of [-Re:Re] for u 4 and [-0.5:0.5] for ©.
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FIG. 6. (Color online) Stable state for Re=30, Ra=4000. (a) uy (b) temperature ® (c) meridional velocity (u,,u,) and the streamline

separating the rolls (solid green curve).

basic state can be stable or unstable, depending on the values
of Re and Ra. When not otherwise specified, “stable state”
will refer to the stable asymmetric state produced at bifurca-
tion PF, and “unstable state” will refer to the unstable asym-
metric state produced at bifurcation PF,. For Re>95, above
H, the asymptotic behavior is a limit cycle. Near the SN and
SH curves, there is a transition between steady and oscilla-
tory behavior. The analysis of this transition is quite compli-
cated and is described in detail in the companion article [18].
We set seven representative points (see Fig. 3) at which
the method is tested: the two first cases, SI (Re=30, Ra
=4000) and ST (Re=60, Ra=18 000), correspond to steady
flow above the convective threshold. In ST we are close to the
threshold and far from it in case SII (beyond the second
pitchfork bifurcation). The rest of the cases considered cor-
respond to temporally periodic flows. For Pla (Re
=110, Ra=18 000), close to the Hopf bifurcation curve, and
PIb (Re=110, Ra=24000), far from it, time series will
present nearly sinusoidal behavior. For the second periodic
case, Plla (Re=70.73, Ra=18 000) and PIIb (Re=50, Ra
=24 000), we are close to the saddle-node bifurcation (which
takes place at Re=70.7 for Ra=18 000 and Re=46.2 for
Ra=24 000) and the oscillations are near heteroclinic. Fi-
nally, PIII (Re=88.5, Ra=13 000) presents an example of
the ability of RM to deal with the dynamics near the second-
ary subcritical Hopf bifurcation. We recall that multiple
steady states can exist; for example, for SII, Fig. 4 shows five
different steady states, while for PIII there is coexistence of
a limit cycle with steady states. In every case, K=41, mean-
ing that no more than 41 leading eigenvalues (those with the
largest real part) and their associated eigenvectors are used.
Results will be presented starting from the simplest cases.

A. Stationary case I: close to the threshold

We start by analyzing the case ST (Re=30, Ra=4000). In
the absence of rotation, i.e., Re=0, the solution for subcriti-
cal values of Ra is the well-known conductive state in which
there is no motion and the temperature varies linearly in z.

For a nonzero value of Re the basic solution defined
above is qualitatively similar to the conductive solution, but
no longer has a simple analytic form and must be computed
with Newton’s method. An example can be found in Fig. 5,
where the azimuthal velocity, isotherms, and meridional ve-
locity field of the basic state at Re=30, Ra=4000 are shown.

The temperature field is close to the linear conductive pro-
file. Two weak large symmetric recirculating cells are found
for the meridional velocity field. The azimuthal velocity in-
creases gradually from negative in the lower part of the cyl-
inder to positive in the upper part, following the counter-
rotating disks.

In region SI, the basic state has one unstable eigenmode,
so time integration starting from basic leads to the convec-
tive stable state shown in Fig. 6. Isotherms, velocity field and
azimuthal velocity are presented. Symmetry with respect to
the z=0 plane is broken. The velocity field contains two
rolls, a larger one in the center of the cell and a smaller one
in the upper right corner, which has been made visible by
drawing the streamline separating the rolls. Isotherms and
azimuthal velocity are convected by the meridional motion.

It is a first verification for RM to reach the stable state
(Fig. 6) when a perturbation is applied to the basic state (Fig.
5). After transition, the expansion coefficients {A,}~_, solu-
tion of system (11), are constant in time. Isotherms of the
constructed stable state U(r,z)=U"(r,z)+>t A& (r,z) are
shown in Fig. 7(a) for K=15 in comparison to those obtained
with the fully resolved temporal code FT. There is a good
agreement between both solutions, as for the rest of the
fields.

In order to quantify the error, we define

-0.5 -0.5
0 .

FIG. 7. (Color online) Isotherm comparison for stable state
computed using FT (solid curves) and RM (dashed curves). (a) Case
ST (Re=30, Ra=4000) with K=15; (b) case SII (Re=60, Ra
=18 000) with K=41.
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FIG. 8. Error e=||Upp—Ugrpmll/||Ur1ll as a function of K for (a) SI (Re=30, Ra=4000); (b) SII (Re=60, Ra=18 000); and (c)

Pla (Re=110, Ra=18 000) at time t=t,.

€ = ||Upr — Urmll/||Upr

>

where Ugy is computed with FT and Ugy with RM, and || || is
the L, norm over the domain D. A plot of € as a function of
K is presented in Fig. 8(a) for the case ST (Re=30, Ra
=4000). We find that € is of order O(1072) and decreases as
K increases.

B. Stationary case II: far from the threshold

The second region analyzed goes beyond the second
pitchfork bifurcation and includes an area far from the
threshold. We choose the parameter values (Re=60, Ra
=18 000) to represent this region.

In this region, the basic state resembles that in ST (see Fig.
5) but has two real positive eigenvalues. There exist two
asymmetric unstable states (also computed with Newton’s
method) one of which is shown in Fig. 9. Starting from either
of these states as initial conditions, time integration leads to
the stable state in Fig. 10, which resembles that described in
region SI.

Figure 7(b) compares the solutions of RM for K=41
(dashed line) and of FT (solid line). The error € quantifying
the difference between Upr and Ugy; is shown in Fig. 8(b).
The error is large [almost order O(1)] for smaller values of K
and a large value of K is needed to obtain acceptable
[0(1071)] values of €. (We note that we have experimented
with another set of eigenvectors, obtained by linearizing
around the unstable state, and have obtained satisfactory
agreement using K as small as 25. But since there is no
systematic means of choosing a state other than the basic

0.5 0.5

state about which to linearize, we do not present these results
here.)

C. Periodic orbit I: near-sinusoidal limit cycle

We now describe the tests of the temporally periodic or-
bits. We start with the limit cycle that appears in the (Re, Ra)
plane above the Hopf bifurcation but far from the SN curve
as in Pla (Re=110, Ra=18 000) and PIb (Re=110, Ra
=24 000). In this region, the basic state has a pair of
complex-conjugate eigenvalues with positive real parts. Fig-
ure 11 (solid curve) shows the time series for temperature at
r=0.5, z=0 in the case Pla. This is the quantity which will
be plotted for all periodic orbits. A near-sinusoidal periodic
behavior is clearly observed. In Fig. 12, the fields are shown
at two instants during the cycle, r=¢, and r=t, (those indi-
cated in Fig. 11). The limit cycle has spatiotemporal symme-
try: the states in the second half of the cycle are related by
reflection symmetry to those in the first half of the cycle. The
vortex in the upper right corner is smaller during the first half
of the cycle [see Fig. 12(c)] and larger during the second half
[see Fig. 12(f)]. The expansion coefficients {A,(1)}f_, com-
puted with RM to construct the flow are periodic in time. The
time series for the temperature obtained by using RM with
K=15 is plotted in Fig. 11 (dashed curve) where it is com-
pared with the solution computed via FT (solid curve). Good
agreement is achieved in both amplitude and period of the
orbit, with relative errors of 3.7% and 4.1%, respectively.

In addition to comparing the time series of @(0.5,0), we
have also compared the entire fields Urr and Ugy at time ¢
=1, (upper row of Fig. 11). Figure 8(c) shows the error € as

0.5 1
r a)

FIG. 9. (Color online) Unstable state in region SII (Re=60, Ra=18 000). (a) u (b) temperature ® (c) meridional velocity (u,,u,) and

the streamline separating the rolls (solid green curve).
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0.5

FIG. 10. (Color online) Stable state in region SII (Re=60, Ra=18 000). (a) u, (b) temperature @ (c) meridional velocity (u,,u;) and the

streamline separating the rolls (solid green curve).

a function of K. It is found to be of order O(1072) and be-
comes smaller as K increases, as in the stationary case. The
same behavior is observed for PIb, the only difference being
that the minimum K used to achieve good results is larger
(K=27) as will be discussed in Sec. VI.

D. Periodic orbit II: near-heteroclinic cycle

We now discuss cases PII, just beyond the saddle-node
curve SN. Starting at a PI case and decreasing Re, the peri-
odic cycles become less smooth as Re, with near-heteroclinic
cycles are found close to the saddle-node bifurcation. The
oscillations consist mainly of two long plateaus with abrupt
gradients between them. Figure 13 (solid curve) shows this
for Plla (Re=70.73, Ra=18 000). Figure 14 shows the so-
lution fields at times ¢t=t; and t=t,, marked in Fig. 13. The
limit cycles, during which the smaller vortex is alternately in
the upper [Fig. 14(c)] and lower [Fig. 14(f)] right corners,
become increasingly complex as the saddle-node bifurcation
is approached, as reported in Ref. [18]. The period increases
dramatically until, precisely at the saddle node, the period

0.1

O(r=0.5, z=0)
o

-0.05

-0.151 J

. .
14.5 15 15.5 16
t

FIG. 11. Time series for ©(0.5,0) obtained with FT (solid
curve) and RM for K=15 (dashed curve). Case Pla (Re=110, Ra
=18 000). Instantaneous flows at times #; and #, are shown in Fig.
12.

becomes infinite and the cycle is heteroclinic. RM has been
tested near this heteroclinic cycle. Figure 13 shows the
agreement between solutions obtained with FT and with RM
for K=37. Results from RM (dashed curve) are in reasonable
agreement with FT and the relative errors in period and am-
plitude are 13% and 1.8%, respectively. The large error in the
period is not surprising, given that the period varies sharply
with Re in this parameter region: RM gives 4.95, while FT
gives 4.34 for Re=70.73 and 5.48 for Re=70.71.

E. Periodic orbit III: secondary subcritical Hopf bifurcation

The reduced model RM has also been able to reproduce
the temporal behavior near the secondary subcritical Hopf
bifurcation. Figure 15 (solid curve) shows the time series for
the temperature obtained with FT for two different initial
conditions at PIII (Re=88.5, Ra=13 000). As shown in
Ref. [18], there are multiple stable solutions in this range:
either a periodic orbit or the stable steady state can be ob-
tained. The periodic signal is attained for FT by setting the
angular velocity of the upper disk to zero for t=0 to r=2, and
for RM by setting all A, initially to 0.01. RM with K=27
generates the same signal (dashed curve) as that obtained
with FT (solid curve) and the agreement between the solu-
tions is good, with relative errors of values 14% and 2.3%
for the period and amplitude respectively. The stable steady
solution is obtained for FT by gradually increasing Re at a
given Ra, while for RM, it is obtained by setting all A; ini-
tially to (=107*). The relative error is 5.4%.

VI. OPTIMIZING THE REDUCED MODEL

Decreasing K greatly reduces the computation time, since
the computation time per time step is proportional to K°. In
this section, we describe numerical experiments we have car-
ried out to reduce K.

The choice of a minimal model has been a central point of
much previous research, and has led to various hybrid ap-
proaches. Guided by physical and dynamical-systems con-
siderations, Noack et al. [1,4] added modes to their POD
models corresponding to the temporal mean flow and to the
pressure. Bangia er al. [12] modeled some damped modes by
slaving, i.e. assuming their amplitudes adjust instantaneously
to those of the active modes. One of the models studied by
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FIG. 12. (Color online) Instantaneous flows for Pla (Re=110, Ra=18 000). Upper row: flow at instant r=1, of Fig. 11. (a) u (b) © (c)
meridional velocity (u,,u,). Lower row: flow at t=1, (d) u, (e) © (f) meridional velocity (u,,u,). In Figs. 12(c) and 12(f) the solid green
curve represents the streamline separating the rolls. The two instantaneous flows are related via reflection symmetry (13).

Barbagallo ef al. [11] combines unstable (growing) eigenvec-
tors with stable (damped) POD modes.

Our criterion for choosing eigenmodes in step 2 is the real
part of the corresponding eigenvalue; this is straightforward
but may incorporate unnecessary modes. We have attempted
to additionally sort eigenmodes based on the magnitude of
the inner products wy,,, computed in step 3 which determine
the nonlinear interaction between the modes, but we found
no conclusive criterion for this a priori search. We then pro-
ceed to sort the modes by their amplitudes |4,;|. Since this a
posteriori sorting necessarily occurs after the computation, it

O(r=0.5, z=0)

FIG. 13. Time series for ©(0.5,0) obtained with FT (solid
curve) and RM for K=37 (dashed curve). Case Plla (Re
=70.73, Ra=18 000). Instantaneous flows at times 7, and t, are
shown in Fig. 14.

does not reduce the computational effort, but could yield
insight on optimizing the RM technique. (We note that POD
models incorporate high-amplitude modes by construction,
but they may not span the space of all possible initial condi-
tions and do not necessarily converge to the correct dynam-
ics [9].)

A number of authors have shown that modes of low am-
plitude may nevertheless be crucial in the dynamics. Ex-
amples abound in which the inclusion of additional modes or
the exclusion of a low-amplitude mode substantially worsens
agreement [2,3,11,12]. Our experience confirms this, and we
report the results of our numerical experiments below.

As described in the previous section, the value of K con-
sidered was varied depending on the case under study, lim-
iting K to 41. In simple cases close to the threshold as in ST
and Pla, K as small as 15 can be chosen. Further from
threshold (SII and PIb), the value of K used was increased to
41 and 27, respectively, to obtain reasonable solutions. In
cases Plla, PIIb, and PIII, for which the behavior of the
temporal solution becomes complicated, K was then in-
creased to 37, 40, and 27, respectively. It is intuitive that K
must increase with the complexity of the temporal signal, but
SII case reveals that, even in the stationary case, many
modes can be required.

Figures 16(a) and 16(c) show the values of |A;| in the
stationary cases SI and SII, respectively. Note that two con-
secutive A, of the same magnitude form a complex-
conjugate pair. Figure 16(a) shows that the A;’s which con-
tribute substantially to the final stable state are concentrated
in the first modes, lending support to our approach. The first
15 leading eigenvalues have been considered in the compu-
tations [Fig. 7(a)] but, as observed in Fig. 16(b), including
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FIG. 14. (Color online) Instantaneous flows for Plla (Re=70.73, Ra=18 000). Upper row: flow at instant t=¢, of Fig. 13. (a) u, (b) ©
(c) meridional velocity (u,,u). Lower row: flow at t=t, (d) uy (¢) O (f) meridional velocity (u,,u.). In Figs. 14(c) and 14(f) the solid green

curve represents the streamline separating the rolls.

only the eight eigenvectors with largest |A;| is sufficient
since the resulting solution is almost the same as that con-
structed from the first 15 eigenvectors. In the case SII, the
entire set of the first 41 leading eigenvalues must be retained.

We now discuss the requirements on K in the near-
sinusoidal periodic cycle case as Ra is increased away from
the threshold by comparing cases Pla and PIb. Figure 17
shows the values of max,|A(r)] for Pla at (Re,Ra)
=(110,18 000) and for PIb at (Re,Ra)=(110,24 000), re-
spectively. The first two eigenvalues, k=1 and 2, are the
complex-conjugate pair to which the basic state is unstable in

0(r=0.5,z

FIG. 15. Time series for ©(0.5,0) obtained with FT (solid
curve) and RM for K=27 (dashed curve). Case PIII (Re
=88.5, Ra=13000). For both FT and RM, either a steady state or
a periodic orbit can be reached, depending on initial conditions.

this parameter region. As Fig. 11 has shown, 15 modes give
satisfactory results for Pla. Figure 17(b), with k=[1,2,5]
shows that the inclusion of mode 5 can saturate the growth of
modes 1 and 2, although with large error in amplitude and
period.

Case PIb best demonstrates the inadequacy of a criterion
based on the amplitude of max,|A,(¢)|, which we will denote
merely by A, for brevity. Figure 17(c) shows how the values
of A, at large k increase with the distance from threshold, as
in the stationary case. Figure 17(d) shows time series ob-
tained by FT and truncations of RM. As mentioned in Sec.
V C, the time series obtained by using 27 leading eigen-
modes is extremely close to that of FT. Drastically truncating
the basis set to retain only the five largest components, k
e[1,2,5,13,7] (listed in order of magnitude of A;) yields a
periodic time series, but whose amplitude exceeds that of FT
by almost 60%. Expanding the set to include the five next
largest components, ke [1,2,5,13,7,3,4,26,27,10], yields
a limit cycle whose amplitude is too small by 25%. If we
exclude the complex pair k=3 and 4 to form the set k
e[1,2,5,13,7,26,27,10], we obtain the time series illus-
trated in Fig. 17(d). The signal saturates at an amplitude
close to that of FT, although the period still shows some
error. However, excluding the smaller-magnitude complex
pair k=26 and 27 leads to the time series in Fig. 17(d) which
diverges at 7~ 1.3; these modes seem to be important for
stabilizing the flow. This shows the failure of a criterion
based on the amplitude of A,. Similar erratic convergence
behavior is reported and analyzed in [2-4,9,11] for POD and
for eigenvector models.
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FIG. 16. (Color online) (a) |A;| values for ST (Re=30, Ra=4000); (b) isotherm comparison for SI using FT and RM with k values

[1-3,5,6,12,14,15]; and (c) |A4| values for SII (Re=60, Ra=18 000);

For a near-heteroclinic cycle as in Plla and PIIb, many
modes are required. The maximum value of the A;’s over a
period are presented in Fig. 18. Inclusion of the entire set of
37 leading eigenvalues (K=37) is required to capture the
heteroclinic cycle shown in Fig. 13. Any smaller set of se-
lected eigenmodes is unable to reproduce the time series. For
the last case under study, PIII, no large values of A, are
found at large k [see Fig. 18(b)] but we have found that K
=27 is the minimum number of modes necessary to accu-
rately reproduce periodic and asymmetric steady solutions.

VII. CONCLUSIONS

A technique to reduce the number of degrees of freedom
to less than 41 has been derived for Rayleigh-Bénard con-

Pla
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vection in cylindrical geometry with counter-rotating disks.
For various Rayleigh and Reynolds numbers, rich and com-
plex dynamics could be reproduced. Even if this success is
restricted in our study to a specific case, we hope that this
example is relevant to a certain class of configurations,
namely bifurcations of flows in confined geometry for mod-
erately stiff problems. We have shown the feasibility of
building a RM technique for time integration. For a given set
of (Re, Ra) values, time integration starting from many ini-
tial conditions can be carried out economically.

Although our study shows that we can reduce the number
of degrees of freedom to a small fraction of that of a fully
resolved simulation, there is, however, at present no reliable
criterion for determining the number of eigenvectors that
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FIG. 17. (a) max,|A(t)| values for Pla (Re=110, Ra=18 000). (b) Time series comparison using FT (solid curve) and RM (dashed
curve) with k values [1,2,5]. (c) max,|A,(¢)| values for PIb (Re=110, Ra=24 000). (d) Time series comparison using FT (solid curve) and
RM with k values [1,2,5,7,10,13] (dotted curve) and [1,2,5,7,10,13,26,27] (dashed curve). The time series diverges for the smaller k set.
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must be retained. Beyond a minimal K value, we neverthe-
less observed a slow but monotonic convergence with K.
Capturing the interaction between eigenmodes is crucial; as
discussed in Sec. VI, these interactions are not easy to follow
and improvement of the reduced model still requires addi-
tional research.

In order to fully describe and understand bifurcation sce-
narios, time integration is insufficient. Instead, bifurcation
analysis is performed via a combination of Newton’s method
to follow stable and unstable branches and the Arnoldi
method to perform linear stability analysis along the
branches and detect bifurcations, which can be quite costly.
Our eventual goal is to extend the RM technique to carry out
bifurcation analysis, using sophisticated tools for bifurcation
analysis, such as MatCont [30] and Auto [31], on the reduced
set of ODEs. A crucial obstacle to this plan is that the basic
state and K leading direct and adjoint eigenpairs, i.e., steps 1
and 2, must be recomputed for each set of (Re, Ra) values. In
order to extend the RM technique to carry out bifurcation
analysis, it would be essential to interpolate basis functions
from those calculated at a few points of the (Re, Ra) plane.
This is a direction of investigation in the near future.

Although the reduced model technique currently requires
more computation time than full simulation, it has yet to be
optimized. In addition, we have some confidence that ex-
tending RM to non-axisymmetric flow is realistic. In a cylin-
drical geometry, the azimuthal direction can be represented
using Fourier series. For an axisymmetric base flow, the
eigenmodes associated with each azimuthal wave number
can be computed independently; the nonlinear interaction as-
sociated with different wave numbers is sparse as well. This
extension would then provide a fast three-dimensional time-
integration code advantageous for flow control applications
that require real-time simulation.
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APPENDIX
1. Evolution equations for perturbation and direct system

The evolution equations for the perturbation are obtained
substituting Eq. (7) into the equations and boundary condi-
tions (1)—(6),

V.id=0, (A1)
ﬁ,@=cﬁ- V@b—ub.véwz@—ﬁ- Vo,
T —

Ly N (A2)

g =— (- V)u’ - (u”- V)i + Pr(- V5 + V2 + RaBe,)
— _/

—
Ly
—(a-Vu,
-

N (A3)
i,=ily=0,=0=0 at z= *1/2, (A4)
ih,=ily=0,ii,=3,0=0 at r=0, (A5)
i,=ily=0.=3,0=0 at r=T. (A6)

By considering U(r,z,1)=U(r,z)eM in Egs. (A1)~(A6) and
neglecting the nonlinear terms (@-V)O in Eq. (A2) and
(a- V)@ in Eq. (A3) we obtain an eigenvalue problem in \.
We will denote by (\;, &) the corresponding eigenvalues and
eigenvectors of this problem.

2. Adjoint system

The derivation of the adjoint system is described in [32].
The adjoint eigenvalue problem in A\ associated with the lin-
ear part of Egs. (A1)-(A6) is

V-i=0, (A7)

-AO@=-u".VO - V?0 - PrRaiie,, (A8)

—Ni=—(u”- V)i - (Vu)4i + Pr(- V5 - Vi) + 0 - VO?,

(A9)
f,=ly=0,=0=0 at z= =172, (A10)
f,=ly=0i,=3,0 at r=0, (A11)
f,=li,=0.=6,0=0 at r=T. (A12)

We will denote by (\;, 7;) the corresponding eigenvalues and
eigenvectors.
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